Seminar Machine Learning Applications in Process Mining

Assessment of Discovering Causal Factors Explaining Business Process Performance Variation

Tom-Hendrik Hülsmann

RWTH Aachen University tom.huelsmann@rwth-aachen.de

July 2020 1

Agenda

- Introduction
- Method
- Example Application
- Conclusion

July 2020 2

Introduction

Discovering Causal Factors Explaining Business Process Performance Variation [1]

- Bart F.A Hompes et al.
- 2017 CAiSE

Discovering Causal Factors Explaining Business Process Performance Variation

Bart F.A. Hompes^{1,2(⊠)}, Abderrahmane Maaradji³, Marcello La Rosa³, Marlon Dumas⁴, Joos C.A.M. Buijs¹, and Wil M.P. van der Aalst¹

Eindhoven University of Technology, Eindhoven, The Netherlands {b.f.a.hompes,j.c.a.m.buijs,w.m.p.v.d.aalst}@tue.nl
Philips Research, Eindhoven, The Netherlands
Queensland University of Technology, Brisbane, Australia {abderrahmane.maaradji,m.larosa}@qut.edu.au
University of Tartu, Tartu, Estonia marlon.dumas@ut.ee

Abstract. Business process performance may be affected by a range of factors, such as the volume and characteristics of ongoing cases or the performance and availability of individual resources. Event logs col-

Business Process Performance

- Measures a qualitative aspect of the process
- Most often time based
 - Case Duration
 - Activity Duration
 - Waiting time
- Discovery of bottlenecks

5

Business Process Performance

Business Process Performance

- Improve processes based on findings
- Decrease execution times
- Decrease costs
- Increase Customer Satisfaction

Causal Factors

- Not where is the problem but what causes the problem
- More detailed than bottleneck analysis
- Allows statements like:
 - "The involvement of Resource A has a causal effect on the performance of the Test activity"

8

Causal Factors

- Novel approach to process performance analysis
- Not a big research focus compared to
 - Performance prediction
 - Replay based bottleneck detection

9

Related Work

- Performance studies applied to real processes
 - Software Development [2], Container Shipping [3], Hierarchical Process Models [4]
- Replay based on alignments
 - van der Aalst et al. (2012) [5]
- Prediction of running cases
 - van der Aalst et al. (2011) [6]
 - Making prediction results more transparent by Verenich Ily et al. (2017) [7]

Introduction 10

Method

July 2020 11

Method

Event Base

- Based on the event log
- Different formal representation
- Set of properties P
 - e.g. $P = \{activity, resource, ...\}$
- Set of event identifiers E
 - e.g. $E = \{ (test, 12A, 2020-07-24 \ 12:00), ... \}$
- Family of functions $\pi_P: E \to V_P$
 - e.g. $\pi_{\text{resource}}(\text{test}, 12A, 2020-07-24 \ 12:00) = "Peter"$

13

Method

1

- Partitions events based on common properties
- Hierarchical structure from top to bottom
- Events in deeper nodes are more similar

Method

2

- Based on Decomposition graph
- Start with fully connected graph
- Prune based on Decomposition graph
- Contains candidate causal relations

Method

Causality Test

- Granger Causality Test [8]
 is performed for each
 edge of the Inclusion
 graph
- Statistical test to find causal relations in time series data
- Edges with negative test are discarded

Causality Graph

3

- Connected nodes represent causal relations
- "The performance of events performed by resource Peter causes the performance of init_exam events related to private insurance patients"

Example Application

July 2020 21

Example Process

patient_id	activity	timestamp	resource	insurance
1	init_exam	13:12	Peter	State
2	test-	13:24	lab	Private
1	test	13:25	Susan	State
3	tes-	13:33	Deborah	Private
•••	•••	•••	•••	•••

0

1

1

1

1

1

Inclusion Graph

Inclusion Graph

Inclusion Graph

in this case 38% reduction of edges

Causality Test

Time Series

E₄

patient_id	activity	timestamp	resour ce	performance
5	init_exam	20-03-01 18:00	Peter	5
3	init_exam	20-03-02 14:30	Peter	2.6
7	init_exam	20-03-03 11:15	Peter	9
2	init_exam	20-03-04 17:45	Peter	2.5
•••	•••	•••	•••	•••

Time Series

E_4

patient_id	activity	timestamp	resour ce	performance
5	init_exam	20-03-01 18:00	Peter	5
3	init_exam	20-03-02 14:30	Peter	2.6
7	init_exam	20-03-03 11:15	Peter	9
2	init_exam	20-03-04 17:45	Peter	2.5
•••	•••	•••	•••	•••

Time Series

Causality Test

Causality Graph

- "The performance of initial exams performed by Peter causes the performance of events related to privately insured patients."
- Type of relation is not known
 - Poor ⇒ Poor
 - Good \Rightarrow Good

Conclusion

July 2020 43

Results

"There is a performance problem with the test activity." "When Peter performs the initial exam, the performance of cases of private patients decreases."

Conclusion

- Higher amount of information compared to traditional approaches
- Results are more actionable
- Less expert knowledge required

Conclusion

- Not all kinds of causal relations can be found
- Granger Causality Test is controversial [9]
- Further pruning of the Inclusion graph could improve runtime
- Statistical approach to Causal Factors, others are possible

Questions

July 2020 47

References

- [1] Bart F.A. Hompes, Abderrahmane Maaradji, Marcello La Rosa, Marlon Dumas, Joos C.A.M. Buijs, Wil M.P. van der Aalst: Discovering Causal Factors Explain- ing Business Process Performance Variation. International Conference on Advanced Information Systems Engineering, 177-192 (2017)
- [2] A. H. M. Shani, R. Sarno, K. R. Sungkono and C. S. Wahyuni: Time Performance Evaluation of Agile Software Development. 2019 International Seminar on Appli- cation for Technology of Information and Communication (iSemantic), pp. 202-207 (2019)
- [3] R. Rahardianto, R. Sarno and G. Intani Budiawati: Performance Time Evaluation of Domestic Container Terminal Using Process Mining and PERT. 2018 International Seminar on Application for Technology of Information and Communication, pp. 469-475 (2018)
- [4] A. N. Rofiif, M. M. Wildan, K. R. Sungkono, R. Sarno and C. S. Wahyuni: Per- formance Analysis of Hierarchical Process Model. 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 171-177 (2019)

. . .

References

- [5] van der Aalst, Wil and Adriansyah, Arya and van Dongen, Boudewijn: Replay- ing history on process models for conformance checking and performance analysis. WIREs Data Mining and Knowledge Discovery Volume 2, pp. 182-192 (2012)
- [6] van der Aalst and M.H. Schonenberg and M.Song: Time prediction based on process mining. Information Systems Volume 36, pp. 450-475 (2011)
- [7] Verenich, Ilya and Nguyen, Hoang and La Rosa, Marcello and Dumas, Marlon: White-Box Prediction of Process Performance Indicators via Flow Analysis. Pro- ceedings of the 2017 International Conference on Software and System Process, pp. 85–94 (2017)
- [8] Granger, C. W. J.: Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, pp. 424 438 (1969)
- [9] Hamilton, James D: Time Series Analysis. Princeton University Press, pp 306-308 (1994)